Package index
-
sewer_data()
- Specify observation data
-
sewer_assumptions()
- Specify modeling assumptions
-
EpiSewer()
- Estimate epidemiological parameters from wastewater measurements
-
model_measurements()
- Model the measurement process
-
concentrations_observe()
- Observe concentration measurements
-
noise_estimate()
- Estimate measurement noise
-
noise_estimate_constant_var()
- Estimate measurement noise with constant variance
-
noise_estimate_dPCR()
- Estimate measurement noise for digital PCR data
-
LOD_assume()
- Assume a limit of detection
-
LOD_estimate_dPCR()
- Estimate a limit of detection model for digital PCR data
-
LOD_none()
- Do not model a limit of detection
-
model_sampling()
- Model the sampling process
-
outliers_estimate()
- Model outliers via an extreme value distribution
-
outliers_none()
- Do not model outliers
-
sample_effects_estimate_matrix()
- Estimate sample effects using a design matrix
-
sample_effects_estimate_weekday()
- Estimate weekday sample effects
-
sample_effects_none()
- Do not model sample effects
-
model_sewage()
- Model the sewage process
-
flows_assume()
- Assume a constant wastewater flow
-
flows_observe()
- Observe wastewater flows
-
residence_dist_assume()
- Assume a sewer residence time distribution
-
model_shedding()
- Model the shedding process
-
shedding_dist_assume()
- Assume a shedding load distribution
-
incubation_dist_assume()
- Assume an incubation period distribution
-
load_per_case_assume()
- Assume the average load per case
-
load_per_case_calibrate()
- Calibrate the average load per case using case count data
-
load_variation_estimate()
- Estimate individual-level load variation
-
load_variation_none()
- Do not model individual-level load variation
-
model_infections()
- Model the infection process
-
R_estimate_splines()
- Estimate Rt via smoothing splines
-
R_estimate_rw()
- Estimate Rt via a random walk
-
R_estimate_ets()
- Estimate Rt via exponential smoothing
-
R_estimate_approx()
- Estimate Rt using an approximation of the generative renewal model
-
generation_dist_assume()
- Assume a generation time distribution
-
seeding_estimate_constant()
- Estimate constant seeding infections
-
seeding_estimate_rw()
- Estimate seeding infections using a random walk model
-
infection_noise_estimate()
- Estimate infection noise
-
infection_noise_none()
- Do not model infection noise
-
model_forecast()
- Forecasting module
-
horizon_assume()
- Specify the forecast horizon
-
horizon_none()
- Do not produce forecasts
-
set_fit_opts()
- Configure the model fitting
-
sampler_stan_mcmc()
- Use the stan MCMC sampler
-
model_stan_opts()
- Specify details of the stan model
-
set_results_opts()
- Configure results returned after model fitting
-
sewer_compile()
- Compile EpiSewer models
-
run()
- Fit an EpiSewer model.
-
plot_R()
- Plot the effective reproduction number
-
plot_growth_report()
- Plot a growth report
-
plot_growth_rate()
- Plot the epidemic growth rate
-
plot_doubling_time()
- Plot the epidemic doubling time
-
plot_infections()
- Plot infections
-
plot_load()
- Plot the estimated load
-
plot_concentration()
- Plot predicted concentration
-
plot_prior_posterior()
- Visually compare prior and posterior of a model parameter
-
plot_LOD()
- Plot limit of detection
-
plot_sample_effects()
- Plot estimated sample effects
-
get_discrete_gamma()
- Get PMF of a discretized Gamma distribution
-
get_discrete_gamma_shifted()
- Get PMF of a discretized shifted Gamma distribution
-
get_discrete_lognormal()
- Get PMF of a discretized lognormal distribution
-
suggest_load_per_case()
- Suggest load per case assumption using wastewater data and case numbers
-
mark_outlier_spikes_median()
experimental - Mark outlier spikes in a measurement time series
-
component_functions()
- Get a list of modeling functions for a component
-
modeldata_init()
- Construct an unspecified EpiSewer model
-
get_checksums()
- Get checksums that uniquely identify an EpiSewer job.
-
summarize_fit()
- Summarize parameters of interest