Skip to contents

EpiSewer

sewer_data()
Specify observation data
sewer_assumptions()
Specify modeling assumptions
EpiSewer()
Estimate epidemiological parameters from wastewater measurements

Measurements module

Modeling functions for the measurement process

model_measurements()
Model the measurement process
concentrations_observe()
Observe concentration measurements
noise_estimate()
Estimate measurement noise
noise_estimate_constant_var()
Estimate measurement noise with constant variance
noise_estimate_dPCR()
Estimate measurement noise for digital PCR data
LOD_assume()
Assume a limit of detection
LOD_estimate_dPCR()
Estimate a limit of detection model for digital PCR data
LOD_none()
Do not model a limit of detection

Sampling module

Modeling functions for the sampling process

model_sampling()
Model the sampling process
outliers_estimate()
Model outliers via an extreme value distribution
outliers_none()
Do not model outliers
sample_effects_estimate_matrix()
Estimate sample effects using a design matrix
sample_effects_estimate_weekday()
Estimate weekday sample effects
sample_effects_none()
Do not model sample effects

Sewage module

Modeling functions for the sewage process

model_sewage()
Model the sewage process
flows_assume()
Assume a constant wastewater flow
flows_observe()
Observe wastewater flows
residence_dist_assume()
Assume a sewer residence time distribution

Shedding module

Modeling functions for the shedding process

model_shedding()
Model the shedding process
shedding_dist_assume()
Assume a shedding load distribution
incubation_dist_assume()
Assume an incubation period distribution
load_per_case_assume()
Assume the average load per case
load_per_case_calibrate()
Calibrate the average load per case using case count data
load_variation_estimate()
Estimate individual-level load variation
load_variation_none()
Do not model individual-level load variation

Infections module

Modeling functions for the infection process

model_infections()
Model the infection process
R_estimate_splines()
Estimate Rt via smoothing splines
R_estimate_rw()
Estimate Rt via a random walk
R_estimate_ets()
Estimate Rt via exponential smoothing
R_estimate_approx()
Estimate Rt using an approximation of the generative renewal model
generation_dist_assume()
Assume a generation time distribution
seeding_estimate_constant()
Estimate constant seeding infections
seeding_estimate_rw()
Estimate seeding infections using a random walk model
infection_noise_estimate()
Estimate infection noise
infection_noise_none()
Do not model infection noise

Forecast module

Modeling functions for specifying forecasts

model_forecast()
Forecasting module
horizon_assume()
Specify the forecast horizon
horizon_none()
Do not produce forecasts

Model fitting

Functions to specify and run the sampling of EpiSewer models

set_fit_opts()
Configure the model fitting
sampler_stan_mcmc()
Use the stan MCMC sampler
model_stan_opts()
Specify details of the stan model
set_results_opts()
Configure results returned after model fitting
sewer_compile()
Compile EpiSewer models
run()
Fit an EpiSewer model.

Plotting

Functions for plotting

plot_R()
Plot the effective reproduction number
plot_growth_report()
Plot a growth report
plot_growth_rate()
Plot the epidemic growth rate
plot_doubling_time()
Plot the epidemic doubling time
plot_infections()
Plot infections
plot_load()
Plot the estimated load
plot_concentration()
Plot predicted concentration
plot_prior_posterior()
Visually compare prior and posterior of a model parameter
plot_LOD()
Plot limit of detection
plot_sample_effects()
Plot estimated sample effects

Specification

Helper functions for specifying distributions and other assumptions

get_discrete_gamma()
Get PMF of a discretized Gamma distribution
get_discrete_gamma_shifted()
Get PMF of a discretized shifted Gamma distribution
get_discrete_lognormal()
Get PMF of a discretized lognormal distribution
suggest_load_per_case()
Suggest load per case assumption using wastewater data and case numbers

Preprocessing

Functions for preprocessing data

mark_outlier_spikes_median() experimental
Mark outlier spikes in a measurement time series

Utilities

Utility functions

component_functions()
Get a list of modeling functions for a component
modeldata_init()
Construct an unspecified EpiSewer model
get_checksums()
Get checksums that uniquely identify an EpiSewer job.
summarize_fit()
Summarize parameters of interest