Package index
-
sewer_data() - Specify observation data
-
sewer_assumptions() - Specify modeling assumptions
-
EpiSewer() - Estimate epidemiological parameters from wastewater measurements
-
model_measurements() - Model the measurement process
-
concentrations_observe() - Observe concentration measurements
-
noise_estimate() - Estimate measurement noise
-
noise_estimate_constant_var() - Estimate measurement noise with constant variance
-
noise_estimate_dPCR() - Estimate measurement noise for digital PCR data
-
LOD_assume() - Assume a limit of detection
-
LOD_estimate_dPCR() - Estimate a limit of detection model for digital PCR data
-
LOD_none() - Do not model a limit of detection
-
model_sampling() - Model the sampling process
-
outliers_estimate() - Model outliers via an extreme value distribution
-
outliers_none() - Do not model outliers
-
sample_effects_estimate_matrix() - Estimate sample effects using a design matrix
-
sample_effects_estimate_weekday() - Estimate weekday sample effects
-
sample_effects_none() - Do not model sample effects
-
model_sewage() - Model the sewage process
-
flows_assume() - Assume a constant wastewater flow
-
flows_observe() - Observe wastewater flows
-
residence_dist_assume() - Assume a sewer residence time distribution
-
model_shedding() - Model the shedding process
-
shedding_dist_assume() - Assume a shedding load distribution
-
shedding_dist_estimate() - Estimate an uncertain shedding load distribution
-
incubation_dist_assume() - Assume an incubation period distribution
-
load_per_case_assume() - Assume the average load per case
-
load_per_case_calibrate() - Calibrate the average load per case using case count data
-
load_variation_estimate() - Estimate individual-level load variation
-
load_variation_none() - Do not model individual-level load variation
-
model_infections() - Model the infection process
-
R_estimate_gp() - Estimate Rt using Gaussian processes
-
R_estimate_splines() - Estimate Rt via smoothing splines
-
R_estimate_rw() - Estimate Rt via a random walk
-
R_estimate_ets() - Estimate Rt via exponential smoothing
-
R_estimate_piecewise() - Estimate Rt via piecewise constant changepoint model
-
R_estimate_smooth_derivative() - Estimate Rt with a smooth derivative
-
R_estimate_changepoint_splines() - Estimate Rt via a changepoint spline model
-
R_estimate_approx()deprecated - Estimate Rt using an approximation of the generative renewal model
-
generation_dist_assume() - Assume a generation time distribution
-
seeding_estimate_constant() - Estimate constant seeding infections
-
seeding_estimate_growth() - Estimate seeding infections with a time-varying growth rate
-
seeding_estimate_rw() - Estimate seeding infections using a random walk model
-
infection_noise_estimate() - Estimate infection noise
-
infection_noise_none() - Do not model infection noise
-
model_forecast() - Forecasting module
-
horizon_assume() - Specify the forecast horizon
-
horizon_none() - Do not produce forecasts
-
damping_assume() - Dampen forecasts
-
damping_none() - Do not dampen forecasts
-
set_fit_opts() - Configure the model fitting
-
sampler_stan_mcmc() - Use the stan MCMC sampler
-
sampler_stan_pathfinder() - Use stan's pathfinder variational inference algorithm
-
model_stan_opts() - Specify details of the stan model
-
set_results_opts() - Configure results returned after model fitting
-
sewer_compile() - Compile EpiSewer models
-
run() - Fit an EpiSewer model.
-
plot_R() - Plot the effective reproduction number
-
plot_growth_report() - Plot a growth report
-
plot_growth_rate() - Plot the epidemic growth rate
-
plot_doubling_time() - Plot the epidemic doubling time
-
plot_infections() - Plot infections
-
plot_load() - Plot the estimated load
-
plot_concentration() - Plot predicted concentration
-
plot_prior_posterior() - Visually compare prior and posterior of a model parameter
-
plot_LOD() - Plot limit of detection
-
plot_sample_effects() - Plot estimated sample effects
-
get_discrete_gamma() - Get PMF of a discretized Gamma distribution
-
get_discrete_gamma_shifted() - Get PMF of a discretized shifted Gamma distribution
-
get_discrete_lognormal() - Get PMF of a discretized lognormal distribution
-
suggest_load_per_case() - Suggest load per case assumption using wastewater data and case numbers
-
qexpgamma() - Exponential-Gamma distribution
-
mark_outlier_spikes_median()experimental - Mark outlier spikes in a measurement time series
-
component_functions() - Get a list of modeling functions for a component
-
modeldata_init() - Construct an unspecified EpiSewer model
-
get_checksums() - Get checksums that uniquely identify an EpiSewer job.
-
summarize_fit() - Summarize parameters of interest